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Klebsiella is a Gram-negative bacterium that belongs to the family 

Enterobacteriaceae. Klebsiella pneumoniae is the most pathogenic species of this 

genus that causes a number of nosocomial and community-acquired infections. Due 

to the misuse of antibiotics, K. pneumoniae acquires different genetic elements 

leading to the development of multidrug resistance (MDR) and extremely drug-

resistant (XDR) strains. Among the emerging resistant strains, carbapenem-resistant 

K. pneumoniae (CRKP), extended-spectrum beta-lactamases (ESBL) producing K. 

pneumoniae, as well as MDR hypervirulent (Hv)-K. pneumoniae strains represent 

a global threat. These K. pneumoniae strains cause severe infections which lack 

effective therapy. CRKP is on the top of the priority pathogens list published by the 

world health organization (WHO) in 2024, for which the development of new 

therapeutic options is critical. This mini-review discusses the evolution of the 

critically resistant K. pneumoniae strains and highlights the available treatment 

options for these strains. In addition, the novel therapeutic strategies that are still in 

research stages or under clinical trials will be reported herein.
 

 

1. Introduction 

 

Klebsiella is a Gram-negative bacterium that is 

considered clinically as the most important member 

of the family Enterobacteriaceae [1]. Klebsiella is a 

ubiquitous organism that is present abundantly in 

various environments including soil and water. In 

addition, Klebsiella spp. can colonize skin, nose, 

throat and the intestinal tract of healthy individuals in 

addition to its ability to reside temporary on the hands 

of health-care workers [2]. On the other hand, 

Klebsiella spp. can cause several infections in 

susceptible people, most commonly pneumonia, 

wound, soft tissue and bloodstream infections, in 

addition to urinary tract infections. Klebsiella 

pneumoniae is one of the main causes of nosocomial 

infections where about 10% of nosocomial infections 

are caused by K. pneumoniae [3]. K. pneumoniae 

infections are considered as a nightmare within the 

hospitals especially for neonates, elderly, and 

immunocompromised patients due to their higher 

resistance to the available therapeutic agents [4]. The 

spread of antimicrobial resistance (AMR) represents a 

global public health crisis. It is estimated that more 

than 700,000 patients die annually due to AMR. The 

elevated AMR not only increases the mortality rates, 

but also prolongs the hospital stays and increases the 

treatment costs [5]. The World Health Organization 

(WHO) published in 2017, a list of critical pathogens 

for which the development of new antibiotic 

treatments is of high priority [6]. Six of these 

pathogens designated the acronym ESKAPE standing  
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for the Gram-positive pathogens Enterococcus 

faecium, Staphylococcus aureus, and the Gram-

negative pathogens K. pneumoniae, Acinetobacter 

baumannii, Pseudomonas aeruginosa, and 

Enterobacter spp. ESKAPE pathogens have acquired 

resistance against most antibiotic treatments including 

the last resort antibiotics including carbapenem class 

[7]. In 2024, the WHO updated the list of antibiotic-

resistant bacterial pathogens (Figure 1) to address the 

growing challenges of antibiotic resistance and to 

guide the development of strategies to control this 

alarming antimicrobial resistance. The carbapenem 

resistant K. pneumoniae (CRKP) jumped to be on the 

top of this list (WHO, 2024). Once infection with K. 

pneumoniae is suspected, antibiotics should be 

prescribed immediately according to the general 

hospital guidelines of antibiotic prescription until the 

antibiotic susceptibility testing is performed. The delay 

in initiation of an effective therapy has been associated 

with a 5-fold increase in mortality rate [8]. Empiric 

therapy for nosocomial infections needs to consider the 

local susceptibility data in order to prevent the 

selection of resistant strains [9]. It is reported that 

administration of antibiotics without susceptibility 

tests is connected to the development of high rates of 

AMR [10]. For hospital-acquired infections (HAIs), 

carbapenem is usually used alone until sensitivities are 

reported. In case of community-acquired infections 

(CAIs) with K. pneumoniae, therapeutic options 

include a 14-day therapy with either cephalosporin as 

monotherapy (third or fourth-generation) or a 

respiratory quinolone as monotherapy or either of them 

in combination with aminoglycoside. If the patient is 

penicillin-allergic, then respiratory quinolone or 

aztreonam should be prescribed [11,12]. 

  

2. Evolution of critically resistant K. pneumonia 

strains and their treatment options 

 

K. pneumoniae is frequently associated with HAIs. 

Owing to the prevalence of K. pneumoniae in hospital 

settings, it is constantly exposed to antibiotics. 

Therefore, K. pneumoniae is continuously subjected to 

selective pressure which leads to the occurrence of 

multiple genetic mutations or transfer and the 

evolution of either multidrug resistance (MDR) or 

extremely drug-resistant (XDR) strains [13]. In  

Figure 1: WHO bacterial priority Pathogens list updated in 2024 

as compared with the 2017 list (adopted from WHO, 2024). 

 

addition, global climate changes have a significant 

effect on the evolution of resistance in environmental 

Klebsiella strains. Climatic changes subject bacteria to  

a new selective pressure. This pressure drives the 

evolution of environmental isolates of Klebsiella spp. 

which are resistant to antibiotics, these strains can 

disseminate into communities causing CAIs that are 

difficult to treat [14]. The most dominant resistant 

strains in nosocomial infections include CRKP, as well 

as ESBL-producing K. pneumoniae [15]. The ESBL-

KP and CRKP contributed to the emergence of MDR 

strains, thus diminishing the available treatment options 

[16]. Hypervirulent (Hv) K. pneumoniae is an evolving 

global pathotype that is more virulent than classical K. 

pneumoniae; these strains have a strong ability of 

infecting healthy individuals from the community. Hv-
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K. pneumoniae can infect nearly every site of the body, 

few examples of these infections include non-hepatic 

abscesses, pneumonia, endophthalmitis, and 

meningitis [17].  In the past, MDR and hypervirulence 

(hv) phenotypes were regarded as well segregated 

pathotypes. Recently, K. pneumoniae has established 

the ability to acquire genetic changes that confer both 

resistance and virulence, leading to the critical 

emergence of a novel clone, termed MDR-Hv K. 

pneumoniae [18]. It was proposed that three main 

patterns can lead to emergence of MDR-Hv K. 

pneumoniae i) Hv-Kp isolates acquire genetic 

elements carrying MDR genes, ii) MDR-Kp isolates 

gain hyper-virulence plasmids, or iii) K. pneumonia 

strains gain plasmids carrying both virulence and 

resistance genes [19]. The MDR-Hv K. pneumoniae 

superbugs represent a major public health threat 

causing severe infections that lack effective therapy 

[20]. 

 

2.1. Extended spectrum beta lactamase (ESBL)-

producing K. pneumoniae  

 

β–lactam is a large class of antibiotics that are widely 

used in the treatment of K. pneumonia infections. 

Resistance to β–lactams has increased dramatically 

with the production of β-lactamases enzymes [21]. 

ESBLs are plasmid-mediated enzymes produced by 

several bacteria. In 1983, ESBLs were first detected in 

Germany in clinical isolates of K. pneumoniae [22]. 

More than 100 different ESBLs have been identified. 

ESBLs belong to three main types TEM, SHV, and 

CTX-M. TEM and SHV types are mostly connected to 

HAIs caused by Klebsiella spp. [23]. Worldwide, there 

is a dramatic increase in the production of ESBLs. For 

example, in a South African hospital, 83% of 

bloodstream infections were attributed to ESBL-

producing K. pneumoniae (ESBL-KP) strains [24]. 

The mortality rates ranged from 14% to 43 % in 

patients with bloodstream infections caused by ESBL-

KP [25]. ESBL-KP isolates pose resistance to almost 

all β-lactam antibiotics, except for cephamycins and 

carbapenems. When ESBL production is confirmed, 

carbapenem therapy should be started. Carbapenems 

alone or in combination with other antibiotics have 

been recommended as the first-line therapy in critically 

ill patients infected with ESBL-producing Gram-

negative bacteria [9]. ESBL-KP can develop co-

resistance to other antimicrobial agents including 

antibiotics belonging to fluoroquinolones and 

aminoglycosides [26]. Tigecycline was reported to have 

a broad-spectrum activity against ESBL-producing 

strains. However, tigecycline has significantly higher 

rates of adverse effects and therefore its usage is 

reserved for cases when other treatments are not 

effective [27]. 

 

2.2. Carbapenem-resistant K. pneumoniae (CRKP)  

 

Carbapenems are among the last-resort antibiotics that 

are used against K. pneumonia. The rapid spread of 

carbapenem-resistant Enterobacteriaceae (CRE) 

including carbapenem resistant-K. pneumoniae 

(CRKP) represents a global public health problem [28]. 

In the past decade, CRKP has emerged in several 

countries including Egypt reaching rates of 40%–60% 

and this prevalence is on the rise [15,29]. It is stated that 

CRKP strains have a strong ability to cause severe 

infections in human. The mortality rates due to CRKP 

infections ranged from 37 % to 65% [30, 31,32] 

Carbapenem resistance in K. pneumoniae is mainly 

attributed to the production of carbapenemases, these 

enzymes have the ability to hydrolyze carbapenems and 

other β-lactams. Carbapenemases are classified into 3 

classes: class A and D enzymes that depend on serine 

for β-lactams hydrolysis and class B metalloenzymes 

which require zinc ions for drug hydrolysis. The most 

important class A carbapenemase is K. pneumoniae 

carbapenemase (KPC). New Delhi metallo-beta-

lactamase (NDM) and Verona Integron-encoded 

MBL(VIM) are important examples of class B 

enzymes, while class D represented by OXA-48-like 

carbapenemases [33]. KPC-type enzymes are the most 

prevalent carbapenemases identified globally in K. 

pneumoniae and are associated with high mortality 

rates. In the era between 2013 to 2018, treatment of 

infections caused by KPC-producing K. pneumoniae 

mostly depended on combined therapies, including 

polymyxin, tigecycline, fosfomycin, or 

aminoglycoside. Importantly, the combined therapy has 

the potential to decrease mortality as compared to 

monotherapy [34].  Starting from 2019, novel 

carbapenemase inhibitors have been approved for 

medical use; these include  avibactam, relebactam, and 
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vaborbactam. The new carbapenemase inhibitors used 

in combinations with β-lactam (BL) antibiotics for 

treatment of severe infections caused by KPC-

producing K. pneumoniae. The approved novel 

combinations for human use are ceftazidime-

avibactam, meropenem-vaborbactam, and 

imipenem/cilastatin-relebactam. These combinations 

are active against class A carbapenemases (including 

KPC) in addition to class C [35,36]. It was reported that 

administration of imipenem/cilastatin-relebactam by 

nosocomial-acquired pneumonia patients reduced 

percentage of death in comparison to piperacillin–

tazobactam-treated patients [37]. In addition, novel 

BL/β-lactamase inhibitors in clinical development 

such as aztreonam-avibactam, cefepime-zidebactam, 

and meropenem-nacubactam have proved a promising 

efficacy against class A and C, as well as class B 

carbapenemases [38].  Cefiderocol, a recently approved 

siderophore cephalosporin that named as ‘Trojan 

horse’ antimicrobial agent, has shown exceptional 

activity against critically resistant Gram-negative 

bacteria including CRKP [39]. Cefiderocol is potent 

against all β-lactamases, including metallo-β-

lactamases and has been indicated for both 

complicated urinary tract infections and ventilator-

associated pneumonia [40]. Apramycin is an 

aminoglycoside that has been traditionally used in 

veterinary medicine since 1980s. Recently, apramycin 

is under development for human use under the drug 

name EBL-1003 [41]. Apramycin showed a promising 

in vivo activity against MDR carbapenemase 

producing K. pneumoniae strains [42]. 

 

2.3. The MDR-hypervirulent (Hv) K. pneumoniae 

(MDR-Hv-KP) superbug 

 

Hypervirulent K. pneumoniae (Hv-Kp) is a variant of 

K. pneumoniae that exhibits hyper-mucoviscocity and 

possesses multiple siderophores as virulence factors. 

Unlike infections caused by the classical K. 

pneumoniae, Hv-Kp strains are characterized by high 

infectivity in healthy people in the community and 

usually affect multiple sites [43]. The mortality rate in 

Hv-Kp associated infections was reported to be very 

high reaching 87.5% [44]. Previously, it was reported 

that antimicrobial resistance is low in Hv-Kp ([45].  

However, recent studies reported an elevated incidence 

of MDR-Hv-Kp [17]. MDR-HvKP strains are highly 

pathogenic and resistant to most of the available 

antimicrobials. MDR-HvKP strains appeared first in 

2014 in China, after this they have been reported in 

Asia, Europe, North, and South America [46]. These 

strains have been reported to pose resistance to β-

lactams mediated by production of ESBLs and 

carbapenemases [47]. Additionally, recent studies 

reported the increasing emergence of polymyxin -

resistant Hv-KP strains in China [48, 49]. Currently, 

there are no effective methods for therapy and control 

of this superbug [47]. For MDR-KP, the optimal 

treatment option has not been well established yet. 

Combination therapies including high-doses of 

meropenem, colistin, fosfomycin, tigecycline, and 

aminoglycosides are widely used, with sub-optimal 

results [50]. Other combinations that prove success are 

the use of polymyxin plus a high dose of a carbapenem 

or dual carbapenem therapy. These regimes were 

effective in case of patients with K. pneumoniae isolates 

that have low-level of carbapenem resistance [51]. 

Recently, some older antibiotics such as tetracyclines 

and chloramphenicol showed efficacy in treatment of 

MDR-K. pneumoniae isolates [52,53]. 

New antimicrobials targeting MDR-KP have been 

developed during the last decades. Efforts in infection 

control and stewardship programs remain the 

cornerstone for limiting the spread of MDR-KP [54]. 

The management of MDR-hv Kp infections requires 

both proper antibiotic therapy and adequate infection 

control. The antibiotic treatment options to consider 

include eravacycline, plazomicin, colistin, tigecycline, 

cefiderocol, meropenem/vaborbactam and 

imipenem/relebactam. These antibiotics have not been 

systematically evaluated for their efficacy against 

MDR-hv Kp strains [46]. However, a lower activity of  

cefiderocol was observed in these emerging MDR-hv-

Kp strains because of the decreased drug uptake as a 

result of the accumulation of multiple siderophore in 

these strains [55]. 

 

3.New therapeutic strategies to combat critically 

resistant K. pneumoniae strains 

 

As requested by the WHO, identifying new medicines 

or novel combinations to combat fatal K. pneumoniae 

isolates is urgently needed. For a while, the pipeline of 
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new drugs for the treatment of MDR Gram-negative 

pathogens had been described to be dry. However, the  

development of new therapies in the near future seems 

to be promising [56]. To combat this escalating threat, 

a number of non-traditional antibacterial agents 

targeting K. pneumoniae resistant isolates have been 

explored in the recent years. These include phage 

therapy, nano-medicine, the use of natural products 

such as plant phytochemicals and microbial 

metabolites, in additions to the development of 

antibodies-based therapy including the monoclonal 

antibodies [57,13]. 

 

3.1. The use of natural products 

 

Plants have been extensively explored as sources for 

identification of effective therapies including 

antimicrobials. Many phytochemicals have shown 

antibacterial activity against K. pneumoniae including: 

alkaloids, flavonoids, glycosides, tannins, and 

phenolic acids [13]. The essential oils (EOs) are plant 

products with a lipophilic nature that showed several 

biological activities. For example, a recent study has 

reported that EO of Zingiber officinale has a 

significant antibacterial activity against Gram-negative 

MDR pathogens, including carbapenem- and 

polymyxin-resistant K. pneumoniae. In CRKP-mice 

sepsis model, this EO exhibited a reduction of bacterial 

load and an increase in the survival of animals without 

causing any toxicity to the host [58]. Moreover, EO 

from the seeds of Camellia japonica, curcumin and 

chitosan combination showed significant antibacterial 

and anti-biofilm activities against CRE isolates [59]. 

Many other plant-based products have demonstrated 

anti-biofilm activity against K. pneumoniae such as 

Pulicaria crispa phenolic extract and Vaccinium 

corymbosum aqueous extract. It is well known that 

biofilm-based infections represent a major challenge in 

therapy, since biofilm structure restricts antibiotic 

penetration [60]. 

Regarding other plant metabolites, the methanolic and 

aqueous extract of Plumbago indica roots proved 

antibacterial activity against drug-resistant K. 

pneumoniae isolates [61]. The flavonoids and 

polyphenol from aerial parts of Vernonia auriculifera 

had a strong activity against Gram-negative pathogens 

such as K. pneumoniae [62]. Additionally, flavone and 

coumarin semi-synthetic derivatives have the potential 

to be used as inhibitors of both serine β-lactamases and 

metallo β-lactamases [63]. In a recent study, coumarin 

showed synergy when combined with meropenem 

against CRKP due to its inhibitory activity against 

carbapenemases hydrolytic activity [64]. 

On the other hand, antimicrobial peptides (AMPs) 

which pose a broad spectrum antimicrobial activity, 

represent a family of small proteins (10–50 amino 

acids) that are produced in nature by different 

organisms.  The first AMP was discovered in the 

silkworm chrysalis, large numbers of AMPs have been 

widely identified in various living organisms, including 

microorganisms, plants and animals [65]. Currently, the 

AMP database [http://dramp.cpu-bioinfor.org/] 

contains 30260 entries; most of them are from the 

animal kingdom. The mechanisms of action of AMPs 

include reducing membrane permeability in addition to 

inhibition of protein, DNA and RNA synthesis [66]. 

AMPs represent a promising source of developing new 

drugs for treatment of infections caused by MDR K. 

pneumoniae [67]. In addition, AMPs have a potent anti-

biofilm activity. For example, osmin is a well-known 

bee venom peptide which exhibits a significant anti-

biofilm activity against CRKP strains [68]. 

Due to their action as permeability modifiers, AMPs 

can act synergistically when combined with several 

antibiotics. For example, AMPs were reported to induce 

synergistic effect with colistin, rifampicin and 

azithromycin against resistant Gram-negative 

pathogens including K. pneumoniae [69,70]. In 

addition, human cathelicidin-derived peptide D-11 had 

synergy with 13 antibiotics using in vitro, ex vivo and 

in vivo models of K. pneumoniae infections [71]. 

K11 is a novel synthetic AMP derived from natural 

AMPs that had a strong anti-biofilm activity against 

MDR and XDR K. pneumoniae and showed synergy 

when combined with chloramphenicol, meropenem, 

rifampicin, and ceftazidime [72]. Although AMPs 

revealed a promising in vitro activity, their application 

is still having several challenges, including the lack of 

stability, possible cytotoxicity, and high production 

cost. There are many trials to improve the antimicrobial 

activity of AMPs through chemical modifications or the  

use of new formulations [67]. About 50 AMPs have 

been registered in clinical trials worldwide. For 

example, some nano-formulations containing 
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antibiotics and antimicrobial peptides are currently in 

clinical trials [73]. Regarding the bacterial secondary 

metabolites, bacteriocins are a heterogeneous group of 

antimicrobial compounds that are secreted by many 

bacterial species to kill competitors. In general, 

bacteriocins have a narrow spectrum, targeting closely 

related bacteria without disrupting human microbiome 

[74]. Klebicin E; a novel bacteriocin derived from K. 

pneumoniae; exhibited a strong efficacy against MDR 

K. pneumoniae strains by acting as a pore-forming 

toxin [75]. On the other hand, biosurfactants are 

compounds with both hydrophobic and hydrophilic 

nature that are naturally produced by certain 

microorganisms. It was reported that biosurfactants 

produced by human microbiota play a role in the 

maintenance of microbial homeostasis, especially in 

the gastrointestinal tract, respiratory tract, skin in 

addition to urinary tract and vagina [76].  

Glycolipid biosurfactants were reported to have 

antibacterial activity against several Gram-negative 

microorganisms including E. coli and K. pneumoniae 

by targeting microbial cell membrance [77]. Other 

studies have proved the antimicrobial activity of 

biosurfactants against clinical isolates of family of 

Enterobacteriaceae including K. pneumoniae strains 

[78,79]. In addition, biosurfactants are proved to have 

potent anti-adhesive and anti-biofilm activities against 

bacterial pathogens [80]. The anti-biofilm activity of 

biosurfactants may be attributed to their effect on the 

quorum sensing (QS) system in addition to their ability 

to reduce surface tension and prevent bacterial 

attachment [81]. However, large-scale production and 

wide application of biosurfactants are limited by their 

low yields and high costs of biosurfactants production 

in a pure form [82]. 

 

3.2. Nanotechnology approaches 

 

Nanotechnology has emerged as a promising strategy 

for fighting MDR bacteria. Antibiotics carried on 

nanoparticles (NPs) have the potential to facilitate 

successful drug delivery to the desirable site [83]. 

Many types of nanoparticles, such as graphene, 

polymers, vesicles, and green synthesized NPs, have 

been developed as drug delivery systems for infectious 

diseases caused by MDR strains [84, 85]. For example, 

a study has explored the effect of zinc ferrate (ZnFeO) 

NPs on K. pneumoniae strains. ZnFeO-NPs exhibited 

both a promising antimicrobial efficiency and anti-

biofilm activity [86]. Another recent study showed that 

bismuth NPs have a high potential to control the 

expression of NDM-β-lactamase gene in MDR K. 

pneumoniae clinical isolates [87]. 

Nano-antibiotics represent a promising therapeutic 

strategy. The transformation of therapeutic agents into 

nanoscale can modify their physiochemical properties, 

increase drug bioavailability, reduce toxicity, and 

improve its interaction and penetration into resistant 

strains [88]. Meropenem-loaded silica-NPs had much 

lower inhibitory concentration than meropenem drug 

against CRE [89]. In addition, recent studies explored 

plant-derived ZnO-NPs and plant-base Ag-NPs and 

reported their strong antibacterial activity against 

MDR-bacteria including K. pneumoniae [90, 91]. 

Importantly, liposomes have emerged as an innovative 

nanotechnology-based approach for drug delivery. 

Additionally, liposomes can be engineered for 

controlled release of drugs including antibiotics [92]. 

Several liposomal formulations have been approved for 

clinical use such as AmBisome® (amphotericin B) 

which is uded for the treatment of fungal infections 

[93]. A recent in vitro study designed PEGylated 

liposomal formulation loaded with different antibiotics 

which showed a 9- to 18-fold reduction in the MIC of 

tested antibiotic against both MDR E. coli and K. 

pneumoniae isolates. In addition, this liposomal 

formulation promoted wound healing in an in vitro 

scratch assay model [94]. 

 

3.3. Phage therapy 

 

One of the recent approaches that that have been 

explored for the treatment of infections caused by 

critically resistant strains is the bacteriophage therapy. 

Bacteriophages are viruses that can infect and kill 

bacterial cell, hence they are considered as natural 

predators of bacteria [95]. Exploring and enhancing 

phage technology is crucial for fighting the critically 

resistant K. pneumoniae strains [96].  Certain phages are 

reported to have efficacy against CR-K. pneumoniae 

infections in vitro and in vivo [97]. Other in vivo studies 

had shown that bacteriophages provide potential 

protection against pneumonia caused by MDR K. 

pneumoniae strains [98,99]. Moreover, a recent study 
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demonstrated the efficacy of phage therapy in the 

treatment of mice wounds infected with K. 

pneumoniae [100]. As it is well known that biofilm-

based infections are very hard to treat, phages therapy 

provide a targeted approach to eradicate K. 

pneumoniae virulence factors including biofilms [101 

102]. One of the drawbacks of phage therapy is the 

ability of bacteria to develop resistance to 

bacteriophages. This problem can be solved by the use 

of phage cocktails. A study conducted in the National 

Institutes of Health (NIH) suggested that using lytic 

phage cocktail successfully lowered the level of MDR- 

K. pneumoniae in the gut of infected mice without off-

target dysbiosis [103]. In addition, a new study 

designed phage cocktails to combat the emergence of 

bacteriophage-resistant mutants in MDR K. 

pneumoniae isolates [104]. On the other hand, phage 

enzymes such as depolymerases could target and 

degrade bacterial surface polysaccharides, and 

effectively reduce bacterial virulence factors including 

biofilm formation [97]. Lysins of bacteriophages 

showed bactericidal activity both against Gram 

negative and Gram positive bacteria [105]. Phage 

depolymerases showed a potential activity in treatment 

of CRKP infections [106]. Additionally, phage 

depolymerase gp531 was found to bind and cleave the 

capsule of K. pneumoniae [107]. A new study 

suggested that mini phage depolymerases can be 

combined in recombinant enzymes to provide extend 

activity, enabling the use of these enzymes against 

multiple K. pneumoniae strains [108]. 

In addition, phage-antibiotic synergy represents a 

promising treatment strategy for K. pneumoniae 

infections. The combination of a novel hypervirulent 

K. pneumoniae phage and ceftazidime showed a 

synergistic effect in suppressing the emergence of 

resistance [109]. The limitations of phage therapy 

include the high production costs and the possibility of 

microbiome dysbiosis, in addition to that other safety 

implications in humans are still under investigation 

[110]. 

 

3.4. Monoclonal antibodies-based approaches 

 

Although the field of antibodies-based therapies has 

many advances in recent years, the development of 

antibacterial monoclonal antibodies (mAbs) has 

progressed relatively slower. Since the first mAb was 

approved in USA by Food and Drug Administration 

(FDA) in 1986, around 80 therapeutic mAbs have been 

approved and marketed, most of them for cancer 

therapy and immunotherapy. The main targets for the 

developed antibacterial mAbs are neutralizing 

toxins/virulence factors. The mAbs-based approaches 

can be used for therapy or prophylaxis especially in case 

of immunocompromised or elderly patients who will 

not respond efficiently to vaccination [111,112] 

There are several forms of mAbs, for example, a nucleic 

acid-encoded mAb was developed; in which DNA 

version of chimeric mAb 2C7 was generated against 

Neisseria gonorrhoeae infection [113]. Bispecific mAb 

is a form that combines two distinct mAbs to 

concurrently target two different proteins. Antibody–

drug conjugate is another form in which drugs or 

antibiotics are covalently attached to the 

immunoglobulin. The combined use of mAbs and 

antibiotic therapy is a multi-attack approach that would 

provide a promising strategy for tackling bacterial 

resistance [114]. Only 26 anti-bacterial mAbs are in the 

clinical trial stages, most of them are designed against 

S. aureus and P. aeruginosa, none of them is targeting 

K. pneumoniae [115]. In vivo study reported the 

efficacy of anti-capsular mAb against infections caused 

by Hv-Kp strains [116]. In another study, the authors 

isolated two mAbs and claimed that these mAbs can be 

considered promising candidates for the treatment of 

CRKP infections [117].  A recent study reported the 

discovery of mAbs binding to type 3 fimbrial proteins 

in K. pneumoniae including MrkA. The anti-MrkA 

mAbs were cross-reactive to a diverse panel of K. 

pneumoniae clinical isolates and provide a modest 

protection in vivo in lung infection model [118]. 

 

Conclusions 

 

K. pneumoniae represents a worldwide public health 

threat, as it is one of the most frequent pathogens 

associated with nosocomial infections. Antimicrobial 

resistance to bacterial pathogens including K. 

pneumoniae has been dramatically increasing in the 

past few years. MDR-K. pneumoniae was listed as a 

priority pathogen for which new antibiotics are urgently 

needed by WHO. Although some novel antibiotics and 

antibiotic combinations have been approved recently 
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for the treatment of critically resistant K. pneumoniae 

strains, more therapeutic options are still needed. 

Several researchers are exploring new therapeutic 

options including phage therapy, antibodies-based 

therapy, the use of nano-formulations, natural products 

such as plant phytochemicals and microbial secondary 

metabolites. Beside these new therapies, strict 

implementation of infection control measures and 

following treatment guidelines in health-care settings 

could help in prevention of the spread of critically 

resistant K. pneumoniae strains. 
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