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Carvedilol is a non-selective β-blocker with α1-blocking properties which is widely 

prescribed for treating hypertension, heart failure, and left ventricular dysfunction 

following myocardial infarction. It has a unique pharmacological profile and acts 

by several mechanisms of action, making it particularly effective in cardiovascular 

disorders therapy. Carvedilol exhibits antioxidant properties by scavenging reactive 

oxygen species (ROS) and reducing oxidative stress. Moreover, it has anti-

inflammatory effects by reducing the levels of pro-inflammatory cytokines. 

Furthermore, it exhibits antiapoptotic properties, which play a crucial role in its 

therapeutic effects. By mitigating ROS, carvedilol helps to preserve mitochondrial 

function and prevent the release of pro-apoptotic factors which would otherwise 

initiate the cell death cascade. Additionally, carvedilol modulates signaling 

pathways that influence apoptosis. Overall, the combination of adrenergic-blocking, 

antioxidant, antiapoptotic, and anti-inflammatory properties makes carvedilol a 

multifaceted drug with significant therapeutic benefits. In our lab, we investigated 

new pharmacological actions of carvedilol in different experimental models. 

Therefore, this review aims to illustrate our new findings in addition to other labs’ 

findings in a comprehensive way to be helpful to readers interested in this field. 

These studies involved in vitro and in vivo experiments using cellular and animal 

models, which have paved the way for clinical investigation of carvedilol in the 

management of distinct types of diseases.  

 

1. Introduction 

 

Carvedilol“1-(9H-carbazol-4-yloxy)-3-[2-(2-methoxy 

phenoxy)ethylamino]propan-2-ol” (Figure 1) is a 

third-generation vasodilatory antihypertensive agent. 

It was licensed in USA as a prescription medicine in 

1995 after being patented in 1978 [2]. Carvedilol is a 

racemic mixture in which the S (-) enantiomer 

contributes to nonselective β-adrenoreceptor blocking 

activity whilst the potency of α1-adrenergic blocking 

action is equal in both S(-) and R(+) enantiomers [3]. 

Likewise, it is considered as a β-arrestin biased-

agonist [4]. Moreover, former studies from our lab and 

other labs revealed calcium channels blocking, 

antioxidant, antiproliferative, anti-inflammatory, 

insulin-sensitizing, cardioprotective against 

dexamethasone-induced cardiotoxicity, hepato-

protective against hepatic ischemia/reperfusion injury,

renoprotective against renal ischemia/ reperfusion 

injury and dexamethasone-induced nephrotoxicity, 

and antiarrhythmic actions to be involved in its 

beneficial effects [5-11]. 
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Figure 1: Chemical structure of carvedilol [1] 

Notably, carvedilol differs from the other 3rd 

generation β-blockers, labetalol and nebivolol, in 

many aspects. Compared to labetalol, carvedilol has a 

more balanced ratio of α- to β- blockade, providing 

more consistent vasodilation and better blood pressure 

control. Additionally, carvedilol's antioxidant 

properties contribute to its cardioprotective effects, 

reducing oxidative stress and potentially improving 

outcomes in heart failure patients. In contrast, labetalol 

lacks these antioxidant benefits [12]. On the other 

hand, nebivolol has different pharmacological actions 

as it can selectively block β1 adrenergic receptors 

without blocking either β2 or α1 adrenergic receptors. 

Moreover, unlike carvedilol, nebivolol can stimulate 

β3 adrenergic receptors and nitric oxide production 

[13] (Table 1).

 
Table 1: Comparison of Carvedilol, Labetalol and Nebivolol 

 

Feature Carvedilol Labetalol Nebivolol 

Drug class Non-selective β-blocker and 

α1 blocker 

(third generation beta 

blocker) 

Non-selective β-blocker and 

α1 blocker 

(third generation beta 

blocker) 

Selective β1 blocker with nitric oxide-

mediated vasodilation 

(third generation beta blocker) 

Mechanism of 

Action 

Blocks β1, β2, and α1 

adrenergic receptors 

Blocks β1, β2, and α1 

adrenergic receptors 

Selectively blocks β1 adrenergic receptors 

and enhances nitric oxide levels due to β3 

adrenergic receptor agonist activity 

Cardioselectivity Non-selective Non-selective β1 selective 

β1/β2-selectivity 0 + +++ 

Lipophilicity Moderate Low High 

Peripheral 

Vasodilation 

Yes (α1 blocking effects) Yes (α1 blocking effects) Yes (nitric oxide-mediated effects) 

Use in Heart Failure Yes (specifically indicated) Off-label, less preferred Off-label, less preferred 

 

2. Pharmacological actions of Carvedilol 

 

Carvedilol competitively blocks β1-, β2- and α1-

adrenoreceptors in a ratio of 10:10:1 [14]. Moreover, 

carvedilol is a β-arrestin biased-agonist that may 

contribute to multiple therapeutic actions [5]. In 

addition, some of the antioxidant effects of carvedilol 

and its metabolites include: preventing the depletion of 

body's natural antioxidant systems such as glutathione 

and vitamin E, scavenging detrimental free radicals, 

preventing lipid peroxidation in cardiac cell 

membranes and abolishing neutrophil release of O2 

[15]. Noteworthy, carvedilol enhances the tolerance to 

oral glucose uptake. These findings imply that α1-

adrenoceptor blockade, antioxidant activity and β-

adrenoceptor blockade may have a greater positive 

impact on insulin sensitivity than β-adrenoceptor 

blockade alone, most likely because of the distinct 

effects on peripheral blood flow [16]. Moreover, 

carvedilol has favorable benefits on lipid metabolism. 

It prevents LDL oxidation, which lowers the amount 

of oxidatively modified LDL, a particularly hazardous 

and atherogenic substance for endothelial cells. 

Likewise, a drop in triglycerides and a rise in HDL 

cholesterol levels were observed in previous studies 

following carvedilol treatment [17, 18]. Interestingly, 

due to blocking of β-adrenoceptors, carvedilol 

suppresses the renin-angiotensin system (RAS), which 
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lowers the synthesis of angiotensin II [19]. As well, 

carvedilol administration is associated with balanced 

inhibition of calcium and potassium channels, 

diminishing of vascular smooth muscle cell 

proliferation and elevation of atrial natriuretic peptide 

(ANP) concentration in plasma [20]. 

 

3. Clinical uses 

 

By virtue of carvedilol's balanced adrenoceptor 

blockade, antioxidant, antiarrhythmic, 

antiproliferative, antihypertrophic, antiatherogenic 

and anti-ischemic properties, it is indicated for the 

management of hypertension, ischemic heart disease 

(IHD) and mild to severe congestive heart failure 

(CHF). For patients with moderate to severe heart 

failure (left ventricular ejection fraction <40%) after 

acute myocardial infarction (MI), carvedilol (usually 

as an adjunct to ACE inhibitors, cardiac glycosides and 

diuretics) is prescribed to reduce the risk of 

hospitalization and recurrent heart attacks and enhance 

survival [21, 22]. Moreover, patients with mild to 

moderate cirrhosis have shown that carvedilol is 

effective in stopping bleeding from esophageal 

varices, and may also help to prevent further bleeding 

[23]. Furthermore, in patients with chronic stable 

angina pectoris, carvedilol decreases myocardial 

oxygen consumption and enhances exercise capacity 

when compared to placebo [24]. 

4. Experimental studies 

  4.1.  On heart 

  4.1.1.  Hypertension and Heart failure 

  4.1.1.1.  Modulation of cardiac microRNAs 

 

A study confirmed carvedilol’s cardioprotection in 

H2O2-induced cell dysfunction and apoptosis in H9c2 

cells that was attributed to altering the levels of 

circular RNA nuclear factor IX (circ_NFIX), 

microRNA-125b-5p (miR-125b-5p), and toll-like 

receptor 4 (TLR4) [25]. In the same context, 

carvedilol-induced downregulation of microRNA-1 

targets heat shock protein 60 to prevent cardiac 

apoptosis [26]. 

 

 4.1.1.2.  Biased-agonism on β-arrestins 

 

Noteworthy, in high-fructose, high-fat diet (HFrHFD)-

fed mice and in streptozotocin (STZ) induced diabetes 

with deterioration of basal cardiac function model, 

long-term carvedilol administration ameliorated 

diabetic cardiomyopathy due to biased activation of β-

arrestins that was decreased in diabetes [5, 27-29]. In 

the same context, by using the cardiomyocyte cell line 

H9c2, carvedilol activated βarrestin2-mediated 

Sarco(endo)plasmic reticulum Ca2+ATPase 

(SERCA)2a SUMO (small ubiquitin-like modifier)-

ylation and activity via cardiac β1-adrenoreceptors. 

This conferred the uniqueness for carvedilol use in the 

management of heart failure other than conventional 

β-blockers [30]. 

4.1.1.3.  Amelioration of chemical- and drug-

induced cardiotoxicity 

 

Carvedilol can be used to mitigate cadmium induced 

cardiotoxicity in rats (as cadmium resulted in elevation 

of mean arterial pressure, cardiac enzymes, 

malondialdehyde (MDA), tumor necrosis factor alpha 

(TNF-α) and caspase-3 while reduction of heme 

oxygenase-1 (HO-1), nuclear factor erythroid 2-

related factor 2 (Nrf2), endothelial nitric oxide 

synthase (eNOS) and total antioxidant capacity 

(TAC)) because of its capacity to reduce the associated 

hypertension in addition to its anti-inflammatory, anti-

apoptotic, and antioxidant properties [31]. As well, 

carvedilol can mitigate doxorubicin-induced 

cardiotoxicity, trastuzumab-mediated left ventricular 

dysfunction, and dexamethasone-induced myocardial 

injury which has been found to be independent of its 

action on α1ARs [6, 32-34]. 

 

4.1.1.4. Modulation of cardiac β1-adrenergic 

receptor crosstalk with nitric oxide and 

diacylglycerol pathways 

 

Additionally, carvedilol stimulates cardiac inotropy by 

activation of β1-adrenergic receptor and protein kinase 

G (PKG) and minimally enhances the amplitude of 

calcium waves. It is considered as a biased ligand to 

facilitate β1-adrenergic receptor coupling to a Gi-

PI3K-Akt-nitric oxide synthase 3 (NOS3) cascade and 

generates a strong β1-adrenergic receptor-cGMP-PKG 

signal to enhance cardiac inotropy in the heart [35]. In 

a type 4 cardiorenal syndrome (CRS) rat model, 

carvedilol had better cardioprotective effects via 

attenuating cardiac apoptotic signaling pathways 

(caspase3/pS473 protein kinase B (Akt)) and 

modifying cardiac β1-adrenergic receptor/β-
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arrestin2/phosphatidyl inositol 4,5 bisphosphates 

(PIP2)/diacylglycerol (DAG) [36].  

 

 4.1.1.5.  Impact on inflammatory cardiac disorders 

 

In experimental autoimmune myocarditis, 

administration of carvedilol by gastric gavage for 3 

weeks exerted cardioprotective effect that was 

associated with the inhibition of matrix 

metalloproteinase (MMP)-2 activity that is present in 

cardiomyocytes during oxidative stress and 

responsible for troponin and myofilament degradation 

and cardiac contraction impairment [37]. Another 

study confirmed this mechanism in acute ischemia-

reperfusion heart injury model [38]. Also, it has been 

reported that carvedilol could modulate serum 

osteopontin (cardiac remodeling marker) and related 

inflammatory cytokine cascades that resulted in 

amelioration in cardiorenal functions in Col4a3−/− 

Alport mouse model of heart failure with preserved 

ejection fraction (HFpEF) [39]. Intriguingly, in 

collagen-induced arthritis (CIA) model in rodents, the 

sympathetic nervous system was hyperactivated 

because of proinflammatory cytokines (such as IL-6, 

TNF-α, and IL-1β) released from activated 

inflammatory immune cells. During rheumatoid 

arthritis, the activated local sympathetic neurons 

contributed to reduced cardiac performance owing to 

excessive release of adrenaline resulting in 

desensitization of β1-adrenergic receptor in the heart. 

Therefore, carvedilol had substantial impact in the 

treatment of rheumatoid arthritis- induced heart failure 

[40]. 

4.1.2.  Cardiac arrhythmia 

 

It has been found that carvedilol was a negative gating 

modulator of hyperpolarization-activated cyclic 

nucleotide-gated (HCN) channels, which are crucial 

for the heart's spontaneous rhythmic action, via 

slowing down and shifting the voltage-dependent 

activation of the channel [41]. Moreover, carvedilol’s 

blocking of voltage-gated K+(Kv)1.3, Kv2.1 and 

human Kv4.3 channels expressed in HEK293 cells 

could be another possible reason for the not fully 

understood actions of carvedilol in various tissues 

especially in the relief of malignant ventricular 

arrhythmias [42-44]. Meanwhile, carvedilol has 

emerged as a treatment strategy for the prevention of 

digitalis-induced cardiac toxicity and arrhythmias 

because it was efficient in preventing ouabain-induced 

spontaneous contractions and apoptosis, through store 

overload-induced Ca2+ release (SOICR) process, 

suggestive of arrhythmogenic action without 

compromising inotropy [45] . In addition, without 

affecting the sarcoplasmic reticulum (SR) calcium 

load, carvedilol dramatically decreased the likelihood 

of spontaneous arrhythmogenic calcium waves. Based 

on its inhibitory effect on the SR calcium release 

channel, carvedilol appeared to have a significant anti-

arrhythmic effect on atrial myocytes in male New 

Zealand White rabbits [46].  

4.1.3.  Ischemic heart disease 

 4.1.3.1.  Modulation of cardiac microRNAs 

 

 In the mouse heart, carvedilol stimulated microRNA-

125b-5p (miR-125b-5p) processing, which defended 

against acute myocardial infarction by suppressing 

pro-apoptotic genes bak1 (BCL2 antagonist/killer 1) 

and klf13 (Kruppel-like transcription factor 13) in 

cardiomyocytes that were elevated during dilated 

cardiomyopathy and cardiac ischemia, in addition to 

improving cardio-protection via β-arrestin-biased 

agonism of β1-adrenergic receptor [47, 48]. 

4.1.3.2.  Mitigation of vasospastic angina and 

atherosclerosis 

 

Additionally, in A-kinase anchoring protein (AKAP) 

150 knockout mice, by Ca2+ desensitization and 

inhibition of vascular smooth muscle cells (VSMCs) 

contraction through decreasing myosin light chain 

phosphorylation, carvedilol reduced coronary spasm 

without altering intracellular Ca2+. Carvedilol's 

modification of calcium sensitization offered fresh 

perspective on the etiology and management of 

coronary spastic angina (CSA) [49]. Moreover, 

carvedilol may prevent atherosclerosis by increasing 

the expression of ATP-binding cassette transporter A1 

(ABCA1), that acts as key reverse cholesterol 

transporter, and improving cholesterol efflux in 

exosomes and macrophages in Human hepatic (Huh-

7) cells and Human monocytic cell line (THP-1), 

potentially via protein kinase B (Akt) and nuclear 

factor-κB (NF-κB) signaling [50]. Furthermore, in 20-

week-old male apolipoprotein E-deficient C57BL/6 

mice, carvedilol had the ability to prevent the 

expansion and monocyte chemoattractant protein-1 

(MCP-1) elevation of angiotensin II-induced 

abdominal aortic aneurysm through its antioxidant, 



M. A. Hafez et al.                                                                                                                                     Zagazig J. Pharm. Sci. 2024; 33(2): pp.  1-21 

5 
 

atheroprotective and anti-inflammatory characters 

along with hemodynamic regulation [51]. 

It has been reported that carvedilol could improve left 

ventricular performance, lower oxidative stress and 

inflammation and relief myocardial hypertrophy 

leading to alleviation of post-infarction heart failure in 

rats [52]. Also, due to carvedilol’s antioxidant action 

on cardiac mitochondria and blocking of β-adrenergic 

pathways, it could be a useful therapeutic intervention 

to inhibit cardiac postischemic dysfunction in 

hypothyroid rats [53]. In the same context, combined 

use of carvedilol and thyroid hormones may 

ameliorate cardiac dysfunction and mitigate the 

damage caused by oxidative stress after acute 

myocardial infarction through the Bax protein 

reduction, Akt activation, and β1-adrenergic receptor 

blockade in male Wistar rats [54, 55]. Nevertheless, 

carvedilol inhibited vascular endothelial growth factor 

(VEGF) effects that was increased by hypoxia and 

eliminated the enhancing effects of adipose-derived 

stem cells (ASCs) on cardiac remodeling and 

dysfunction following myocardial infarction [56]. 

Noteworthy, carvedilol could modulate cardiac AMP-

activated protein kinase (AMPK) signaling pathway to 

lessen the negative consequences of ischemia and 

reperfusion injury such as oxidative stress, 

endoplasmic reticulum stress, apoptosis and 

autophagy. Carvedilol resulted in significant increase 

in systolic left ventricular function, enhanced intrinsic 

left ventricular mechanics, improved metabolism, 

improved myocardial salvage and decreased infarct 

size in C57BL/6J mice [57]. Carvedilol’s 

cardioprotective effects are summarized in figure 2. 

 

4.2.   On the liver 

4.2.1. Hepatic toxicity and carcinoma 

 

In doxorubicin/5-fluorouracil-induced hepatotoxicity 

model in female Wistar rats, carvedilol markedly 

reduced the serum levels of alkaline phosphatase 

(ALP), alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST). It also elevated the levels of 

hepatic catalase (CAT), superoxide dismutase (SOD) 

and glutathione peroxidase (GPx) in addition to MDA 

reduction. These results showed potent 

hepatoprotective effects of carvedilol due to improve 

in vivo antioxidant actions [58]. In hepatic 

ischemia/reperfusion injury model in HFrHFD-fed 

mice, the hepato-protective effect of carvedilol was not 

dependent on the activation of either G protein-

coupled receptor kinase 2 or 5 (GRK2 or GRK5) 

although GRK2 and GRK5 inhibitors elevated its anti-

apoptotic, antioxidant and anti-inflammatory 

properties [7]. In the same context, another study 

reported that vasodilatory effect of carvedilol had a 

significant role in mitigation of nonalcoholic fatty liver 

in rats [59]. 

 

Furthermore, using human hepatocellular carcinoma 

(HepG2) cell lines, carvedilol induced over-expression 

of pro-apoptotic proteins (such as fas-associated 

protein with death domain (FADD), caspase-3, 

caspase-8) and down-regulation of anti-apoptotic and 

drug-resistant genes (such as mitogen activated protein 

kinases/extracellular signal-regulated kinases 

(MAPK/ERK), protein kinase B (Akt), mechanistic 

target of rapamycin (mTOR), epidermal growth factor 

receptor (EGFR) and multidrug resistance genes-1 

(MDR1)). Additionally, carvedilol protected non-

tumor cells against oxidative stress and apoptosis 

through glutathione (GSH) elevation and MDA 

reduction [60]. 

 

Figure 2: Amelioration of cardiac dysfunction and toxicity by 

carvedilol. 
 

4.2.2. Liver fibrosis and cirrhosis 

 

     As carvedilol contributed to fibrotic nodules’ 

reduction in the hepatic parenchyma, liver function 

enhancement, reduction in oxidative stress markers 

and downregulation of TLR4/PI3K/mTOR pathway in 

which TLR4 through MyD88 dependent pathway 

activated PI3K/AKT/mTOR pathway subsequently 

stimulating NF-κB activation and various 

inflammatory mediators release that resulted in hepatic 

damage and fibrosis, it was considered a potential 
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intervention for the regression of hepatic cirrhosis in a 

hamster model of CCl4-induced liver cirrhosis, 

paracetamol-induced acute hepatotoxicity in rats and 

leflunomide-induced liver injury in mice. In addition, 

cell proliferation markers, such as c-Myc (oncogene) 

and Ki-67 (indicator of immature liver cells), were 

slightly irregularly expressed in response to carvedilol  

[61-64]. 

 

 Moreover, in cirrhotic rats, carvedilol reduced 

sinusoidal remodeling, portal pressure, gastric variceal 

bleeding and intrahepatic angiogenesis. In addition, 

carvedilol inhibited transforming growth factor β1 

(TGF β1)-induced fibronectin synthesis in endothelial 

cells which involved in sinusoidal remodeling [65, 66]. 

Other investigations revealed that circulating 

microRNA-200a/SMAD7/TGF-β1/EMT/MAPK 

pathway (in which carvedilol improved the expression 

of anti-fibrotic miR-200a subsequently inducing 

protective SMAD7 that eventually inhibited pro-

fibrogenic TGF-β1 as well as carvedilol inhibited α-

SMA, vimentin (EMT markers) and NF-κB/MAPK 

that resulted in prevention of fibroblast production and 

collagen deposition), down-regulation of TLR4 

expression and attenuation of hepatic stellate cell 

activation, proliferation, invasion and collagen 

synthesis through modulation of RhoA/Rho-kinase 

pathway were critical in the mitigation of hepatic 

fibrosis and cirrhosis by carvedilol [67-70]. 

 

4.2.3.   Hepatic autophagy 

 

Noteworthy, the rise in autophagosomes observed 

after carvedilol administration was not attributable to 

elevated autophagosome synthesis, but rather to 

compromised autophagosome destruction brought on 

by elevated lysosomal pH. Additionally, carvedilol 

impeded the autophagic flux and subsequently 

stimulated apoptosis in hepatic stellate cells, a new 

mechanism for carvedilol’s attenuation of liver 

fibrosis [71]. Other studies in rats indicated that 

modulation of TLR-4/IL-6/TNF-α, COX-2 and 

eNOS/iNOS pathways (in which hepatic ischemia 

reperfusion contributed to TLR-4 signaling that 

induced NF-kB resulting in elevation of several 

inflammatory mediators such as interleukin-6, TNF-α 

and cyclooxygenase-II as well as it led to a marked 

reduction in eNOS (protective) but a significant rise in 

iNOS (pro-inflammatory) expression), targeting of 

dynamin-1-like protein (DNM1L), induction of 

nuclear receptor related-1 protein (Nurr-1)/glial cell 

line derived neurotrophic factor (GDNF)/AKT 

pathway (that had protective and antiapoptotic against 

hepatic ischemia reperfusion injury), suppression of 

apoptosis and the glycogen synthase kinase-3 beta 

(GSK3β)/NF-кB hub and promotion of autophagy and 

lysosomal biogenesis by carvedilol were responsible 

for its hepato-protective action [72-74]. Carvedilol's 

actions on hepatic autophagy are summarized in figure 

3. 

Figure 3: Effect of carvedilol on hepatic autophagy. GFP-LC3 

(green fluorescent protein- light chain 3), LC3B-II (light chain 

3B-II) and TFEB (transcription factor EB). 

 

4.3.   On the kidney 

 

In HFrHFD-fed mice, it has been reported that 

renoprotective effect of carvedilol against renal-

ischemia-reperfusion-injury (R-IRI) was dependent on 

lowering oxidative stress and inflammation without 

affecting lipid signaling [8]. In addition, carvedilol 

inhibited L-buthionine sulfoximine (BSO)-induced 

ferroptosis, the disruption of mitochondrial 

morphology and the mitochondrial ROS caused by 

ferroptosis inducers, so it could be used for acute 

kidney injury due to suppression of organ damage and 

scavenging of lipid peroxyl radical [75]. In other 

studies, carvedilol selectively blocked the organic 

cation transporters in renal proximal tubules limiting 

the renal accumulation of cisplatin and ameliorated 

cisplatin-induced nephrotoxicity via antioxidant 

activity or β-arrestin recruitment [76,77]. In 

dexamethasone-induced nephrotoxicity in rats, 

carvedilol markedly reduced the renal levels of 

Wnt3A/β-arrestin2/β-catenin pathway that involved in 

renal glomerular damage and proteinuria and this 

action had a role in its renoprotective effect [9]. 

 

4.4. On nervous system 



M. A. Hafez et al.                                                                                                                                     Zagazig J. Pharm. Sci. 2024; 33(2): pp.  1-21 

7 
 

4.4.1. Alzheimer’s disease, Parkinson’s disease and 

multiple sclerosis 

 

In N2a/Swe.D9 mouse model in which Presenilin 

exon9 deletion mutant and Swedish amyloid precursor 

protein (Swe-APP) mutant was transfected into 

Neuro2a (N2a) cells, carvedilol inhibited apoptotic 

signals by lowering the amount of cleaved caspase-3 

and cytochrome C release resulting in protection 

against endogenous β-amyloid (Aβ)-induced 

neurotoxicity and Alzheimer’s disease [78]. Other 

investigations reported that R-carvedilol enantiomer 

(but not racemic carvedilol) relieved memory 

impairment, neuronal hyperactivity, and neuronal loss 

even in late stages of Alzheimer’s disease (AD) via 

shortening ryanodine receptor 2 (RyR2) open time 

[79-81]. Also, in mouse hippocampus neurons, it has 

been reported that carvedilol activated the mutant β2-

adrenergic receptor, promoting endogenous L-type 

calcium channel (LTCC) activity via cAMP/PKA 

signaling to control neuronal excitability in 

hippocampal neurons [82]. Surprisingly, in the rat 

hippocampal region, carvedilol reduced orchiectomy-

induced emotional memory disruption and impairment 

[83]. 

In a Parkinson’s disease rat model, rotenone-induced 

histological damage, motor impairments and problems 

with spatial memory were all alleviated with 

carvedilol.  

Furthermore, carvedilol greatly prevented the 

rotenone-induced sub-expression of tyrosine 

hydroxylase (TH) in the rats' striata. Inhibition of 

rotenone-induced neuro-inflammation, microglial 

activation and glial fibrillary acidic protein (GFAP) 

release alongside with lessening in alpha-synuclein, 

phospho-Tau (P-Tau) protein expression and N-

methyl-D-aspartate receptor activation were linked to 

these effects. Additionally, via inhibiting GSK3β and 

stimulating phosphoinositide 3-kinase (PI3K), 

carvedilol decreased the hyperphosphorylation of tau 

protein [84].   

Furthermore, carvedilol had a neuroprotective action 

against experimental autoimmune encephalomyelitis 

(EAE)-induced multiple sclerosis through suppression 

of the TLR4/ myeloid differentiation factor 88 

(MYD88)/tumor necrosis factor receptor-associated 

factor 6 (TRAF6)/c-Jun N terminal (JNK)/p38 

mitogen-activated protein kinase (p38-MAPK) 

pathway [85]. In the same context, another study 

revealed the remyelinating action of carvedilol in 

cuprizone-induced rat model of demyelination [86]. 

These neuroprotective effects are summarized in 

figure 4. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 4: Mitigation of Alzheimer’s disease, Parkinson’s disease and multiple sclerosis by carvedilol. RyR2 (ryanodine receptor 2), 

TH (tyrosine hydroxylase), GFAP (glial fibrillary acidic protein), P-Tau (phospho-Tau), TLR4 (toll-like receptor 4), MYD88 

(myeloid differentiation factor 88), TRAF6 (tumor necrosis factor receptor-associated factor 6), c-JNK (c-Jun N terminal) and p38-

MAPK (p38 mitogen-activated protein kinase). 

4.4.2.   Depression and neurological damage  
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Through the use of network pharmacology analysis 

integration, carvedilol may have potential therapeutic 

benefits in the management of ischemic 

cerebrovascular disease (ICD) by modulating a 

number of interrelated biological mechanisms [87]. 

Another study suggested that carvedilol interacted 

with both in vitro and in vivo serotonin 2A receptors 

which could be a therapeutic option for some 

neurological or behavioral disorders [88].  

In in vivo STZ-induced diabetic neuropathy and in 

vitro high glucose-induced neuronal damage, 

carvedilol could reduce nerve growth factor (NGF) 

content in the dorsal root ganglion (DRG) that 

possessed a sensitizing effect on nociceptors and had 

an antioxidant impact, which may account for some of 

its neuroprotective benefits [89, 90]. As well, it has 

been reported that carvedilol elevated brain 

concentrations of brain-derived neurotrophic factor 

(BDNF) that was reduced during depression and stress 

and had antidepressant properties in a mouse model of 

chronic unpredictable stress (CUS)-induced 

depression and due to its antioxidant and neurotrophic 

properties, it could enhance cognitive function and 

social behavior  [91]. Other studies showed that the 

neuroprotective action of carvedilol against hepatic 

encephalopathy- and acrylamide- induced brain 

damage in mice was attributed to its regulation of 

inflammation, oxidative stress and apoptosis markers 

[92-93]. 

  

4.5.   Antimicrobial experiments 

 

Although, Gram-negative bacteria (such as E. coli and 

P. aeruginosa) demonstrated a significant level of 

resistance to carvedilol through its breakdown into 

metabolites, Gram-positive bacteria (such as S. aureus 

and S. epidermidis) revealed the most powerful 

carvedilol-induced suppression of bacterial growth 

through alterations in S. aureus's cellular membranes 

composition and permeability [94]. Another study 

revealed that carvedilol promoted the antimicrobial 

action of ciprofloxacin against S. aureus  [95]. In the 

same context, it has been reported that carvedilol had 

antiparasitic effects against Trypanosoma cruzi, the 

causal agent of Chagas disease, as carvedilol promoted 

the production of immature autophagosomes, which 

were less hydrolytic and acidic. This activity led to a 

considerable decrease in infection and parasite burden 

by impairing trypomastigotes' survival as well as the 

replication of amastigotes and epimastigotes. 

Additionally, carvedilol decreased the peak of the 

whole-body parasite load in infected mice [96]. 

Likewise, carvedilol blocked the degradation of β-

arrestin 2, which was induced by viral infection, so 

carvedilol may act as a potential antiviral drug 

candidate [97]. As well, carvedilol could fight 

coronavirus infectious disease 19 (COVID-19) via 

down-expression of angiotensin-converting enzyme 2 

(ACE 2), SARS-Coronavirus-2 host receptor, 

reduction of interleukin 6 (IL-6) which played a major 

role in the inflammatory cascade of COVID-19 and 

inhibition of the main protease (Mpro) which was one 

of SARS-CoV-2 essential proteins [98-100]. 

 

4.6.   On cancer 

 

Unlike unbiased β-blockers, carvedilol is a powerful 

cancer preventive agent owing to preventing (or 

"hijacking") ERK translocation into the nucleus in the 

mouse epidermal JB6 P+ cells treated with the tumor 

promoter EGF model [101, 102]. Other reports 

suggested that inhibition of polymerase 1 and anti-

apoptotic protein B-Cell Lymphoma 2 (Bcl-2) with 

carvedilol might be the reason for its cancer-

preventive action [103, 104]. Noteworthy, chronic 

high dose of carvedilol inhibited bone sarcoma cell 

viability and clonogenic survival and elevated 

radiosensitivity in canine osteosarcoma cells [105]. 

Also, another study found that carvedilol inhibited the 

reactive oxygen species (ROS)-mediated 

phosphoinositide 3-kinase (PI3K)/ protein kinase B 

(AKT) signaling pathway and suppressed the 

malignant growth of mammary epithelial cells [106]. 

In murine epidermal JB6 P+ cells, the skin cancer 

chemo-preventive effects of carvedilol were 

dependent on DNA repair regulation [107]. Cancer 

preventive pathways by carvedilol are summarized in 

figure 5. 
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Figure 5: Cancer preventive pathways by carvedilol. EGF (epidermal growth factor), ERK (extracellular signal-regulated kinase), Bcl-

2 (B-Cell Lymphoma 2), ROS (Reactive oxygen species), PI3K (phosphoinositide 3-kinase), AKT (protein kinase B), UV (ultraviolet), 

H2O2 (hydrogen peroxide), CPDs (cyclobutane pyrimidine dimers), PG E2 (Prostaglandin E2), Ki-67 (marker of proliferation Kiel 67) 

and p53 (transformation-related protein 53).

4.7.   On skin 

 

It has been documented that carvedilol could mitigate 

nitrogen mustard–induced skin injury [108]. By 

blocking cAMP/protein kinase A/ phosphor-cAMP 

response element-binding protein (CREB) signaling, 

carvedilol efficiently reduced melanogenesis in human 

melanocytes and ex vivo human skin [109]. In the 

rosacea-like inflammation mouse model, through 

inhibiting the Toll-like receptor 2 (TLR2)/ kallikrein 5 

(KLK5)/cathelicidin pathway in macrophages, 

carvedilol could mitigate the skin inflammatory 

response associated with rosacea [110]. 

4.8.   On inflammation 

 

In a mouse model of nucleotide oligomerization 

domain (NOD)-like receptor family pyrin domain 

containing-3 (NLRP3)-associated peritonitis, 

carvedilol was considered an autophagy inducer as it 

suppressed the pyroptosis and activation of NLRP3 

inflammasome, ASC oligomerization and the 

lysosomal and mitochondrial damage [111]. It has 

been reported that particularly in the dental pulp's 

deeper areas, carvedilol gel might be able to lessen the 

inflammation and necrosis resulted from H2O2 in 

bleaching gel in Wistar rats' dental pulp tissue [112].  

Noteworthy, by preventing cellular oxidative stress 

and inflammatory pathways that led to pancreatic 

damage, carvedilol prevented L-arginine-induced 

acute pancreatitis in a rat model [113]. It has been 

documented that the gastro-protective action of 

carvedilol against aspirin-induced stomach injury and 

indomethacin-induced acute intestinal damage in rats 

might be ascribed to its anti-inflammatory and 

antioxidant characteristics, which influenced the NF-

kB/COX-2/iNOS pathways [114, 115]. In a rat model 

of ulcerative colitis, carvedilol ameliorated the colon's 

architecture and increased the number of mucus-

producing goblet cells (GCs). The suppression of 

oxidative stress, fibrosis, inflammation and barrier 

dysfunction might be responsible for this anti-colitic 

action [116]. 
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4.9.   On glucose homeostasis 

 

In high fat diet (HFD)-induced obese mouse model, 

carvedilol ameliorated glucose tolerance and insulin 

sensitivity through the management of chronic 

adrenergic overdrive and hyperleptinemic conditions 

[117]. Moreover, through the suppression of oxidative 

stress, nuclear factor kappa B (NF-κB), 

cyclooxygenase-2 (COX-2), inducible nitric oxide 

synthase (iNOS), and proinflammatory cytokines, 

carvedilol could protect mice from STZ-induced 

pancreatic β-cell destruction and type I diabetes [118]. 

4.10.   On lungs 

 

In an experimental model of pulmonary 

thromboembolism in isolated perfused rabbit lungs, 

carvedilol’s vasodilatory actions on pulmonary arterial 

vessels resulted in enhanced capillary filtration 

coefficient due to increased precapillary resistance and 

improved endothelial permeability [119]. In the same 

context, by regulating P-AKT/mTOR/TGFβ1 

signaling and the associated inflammatory and fibrotic 

consequences, carvedilol mitigated silica-induced lung 

fibrosis in male Sprague Dawley rats [120]. In human 

bronchial epithelial cells (BEAS2B), carvedilol might 

control RhoA/ROCK signaling activity and protect 

against lipopolysaccharide (LPS)-induced acute lung 

injury (ALI) [121]. Likewise, carvedilol alleviated the 

adverse effects in sepsis-induced ALI in rats through 

high mobility group box 1 (HMGB1)/ soluble 

receptors for advanced glycation end product (s-

RAGE) interaction [122].   

4.11.   On testes 

 

A study reported that carvedilol could mitigate 

testicular impairment and disrupted spermatogenesis 

in rats with adjuvant rheumatoid arthritis via 

modulating AMPK/ERK and PI3K/AKT/mTOR 

pathways [123]. As well, carvedilol could ameliorate 

cyclosporine-, cadmium- and aluminum- induced 

testicular toxicity in male Wistar rats through 

modulating the proinflammatory cytokines, Nrf2/HO-

1 pathway and apoptosis [124-126]. 

4.12. On eyes 

In a cellular model of diabetic retinopathy, carvedilol 

has been found to activate the Nrf2/ antioxidant 

response element (ARE) pathway in retinal pigment 

epithelial cells and prevent high glucose-induced 

oxidative stress and apoptosis [127]. Furthermore, in 

C57BL/6J mice subjected to optic nerve injury (ONI), 

carvedilol enhanced the survival of retinal ganglion 

cells through apoptosis signal-regulating kinase-1 

(ASK1) and MAPK pathway [128]. Also, it has been 

documented that carvedilol can be used in glaucoma 

treatment as it could reduce elevated intraocular 

pressure [129]. Another study suggested that 

carvedilol can be used for the management of retinitis 

pigmentosa (RP) as it ameliorated the deficient visual 

motor response (VMR) of the RP larvae and increased 

their rod number [130]. The pharmacological actions 

of carvedilol are outlined in Table 2. 

5.   Adverse effects 

 

Compared to other β-blockers, carvedilol is associated 

with fewer adverse effects that are dosage-related, 

typically manifest early in the therapeutic regimen, and 

have a lower incidence. Asthenia, malaise, 

bradycardia, dyspnea, and malaise (caused by β-

blockade) as well as postural hypotension, headache 

and dizziness (caused by the drug's vasodilatory 

actions) are the most often reported adverse events 

[139]. 

6.   Drug-drug interactions 

 

Carvedilol has comparatively few medication 

interactions. Combination with fluoxetine, a selective 

serotonin reuptake inhibitor and a potent inhibitor of 

cytochrome P450 2D6 (CYP2D6), results in a 

significantly increased bioavailability of carvedilol 

and subsequently elevates its severe adverse effects 

[140]. It is well known that carvedilol can inhibit the 

activity of P-glycoprotein (P-gp), a membrane 

transporter protein that is essential for the removal of 

medications and other chemicals from cells, especially 

those found in the blood-brain barrier, liver, kidneys 

and intestine resulting in enhanced effects and toxicity 

of some drugs that are P-gp substrates such as digoxin 

and cyclosporine [141, 142]. 
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Table 2: Pharmacological actions of Carvedilol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.   Conclusion and future perspectives 

 

The former preclinical findings showed novel actions 

of carvedilol in ameliorating several disorders and 

modulating multiple signaling pathways. Advanced 

techniques like omics technologies and high-

throughput screening can uncover novel molecular 

targets and pathways modulated by carvedilol, 

enhancing our understanding of its multifaceted 

effects. Additionally, the research into its role in 

modulating the immune response and reducing fibrosis 

may open new avenues for treating chronic 

inflammatory and fibrotic diseases. Investigating the 

potential of carvedilol in combination therapies can 

reveal synergistic effects with other drugs, optimizing 

treatment regimens for cardiovascular and other 

systemic diseases. Overall, continued preclinical 

studies will be pivotal in fully harnessing carvedilol's 

therapeutic potential and expanding its clinical 

applications. 
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