Antimicrobial susceptibility of bacteria isolated from children infected eyes in Benha University hospital

Ghada H. Shaker1, Amira M. El-Ganiny1, Abeer A. Aboelazm2, Heba A. El-Dash1,*

1Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
2Department of Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt.

* Corresponding author e-mail: hebaaldash@gmail.com

ABSTRACT

The aim of current study is to characterize bacteria isolated from eye infections and evaluate the effectiveness of some antimicrobials found in eye drops in the Egyptian Market. Clinical bacterial isolates were recovered from patients having conjunctivitis from Benha University Hospital and identified using standard microbiological techniques. Antimicrobial susceptibility of these isolates against various antimicrobials was tested by the disc diffusion method.

A total of eighty one bacterial isolates were identified in this study, 30 Gram positive isolates and 51 Gram negative isolates. The major bacterial isolates were Pseudomonas aeruginosa (37\%) and Staphylococcus spp. (37\%). All the isolates were susceptible to fluoroquinolones, and almost all of them were susceptible to aminoglycoside antibiotics. While 75 isolates were susceptible to tetracycline and 71 isolates were susceptible to chloramphenicol. High resistance rates were observed for both bacitracin (45.7\%) and fusidic acid (60.4\%). Seven isolates were multidrug resistant (MDR).

This study demonstrated that isolates from infected eye were highly sensitive to fluoroquinolones and aminoglycosides. This study recommends that antimicrobial susceptibility should be performed for bacteria isolated from patients’ eyes before antimicrobial therapy to avoid emergence of MDR isolates

Key words: eye infections, Staphylococcus spp., Pseudomonas, antimicrobial resistance,
al., 1970; Seal et al., 1982). Recently, there is a slight decrease in susceptibility of bacteria isolated from infected eyes to ciprofloxacin and ofloxacin (Bharathi, 2010; Chhablani, 2013). Also Mshangila et al. (2013) reported increased resistance to tobramycin, while Muluye et al. (2014) showed that most of bacterial isolates from eye infection were resistant to tetracycline.

The aim of current study is to determine the types of bacterial isolates causing eye infections in children living in Benha, Qalyubia, Egypt. In addition the susceptibility of bacteria isolated from eye infections to various antibiotics was determined for better choice of therapeutic options.

MATERIALS and METHODS

Bacteria isolation and identification

A total of one hundred and sixteen clinical specimens were collected from eyes of children diagnosed as having conjunctivitis and attending the Ophthalmic Department of Benha University Hospital, Egypt. All specimens were taken by moistened sterile swab. The swabs were cultured on chocolate agar, blood agar, MacConkey agar and incubated for 24 hours at 37°C. Isolated bacteria were characterized using Gram staining and biochemical reactions (Collee et al., 1996).

Antibiotic susceptibility test

Bacterial isolates were tested for their susceptibility in vitro against antimicrobial agents by disc diffusion method according to Clinical and Laboratory Standards Institute (CLSI, 2013). The antibiotics discs were purchased from Oxoid (Hanpshire, England) and included gatifloxacin (GAT, 5µg), ofloxacin (OFX, 5µg), neomycin (N, 30µg), tobramycin (TOB, 10µg), bacitracin (B, 10µg), tetracycline (TE, 30µg), ciprofloxacin (CIP, 5µg), levofloxacin (LEV, 5µg), gentamycin (CN, 10µg), fucidic acid (FD, 10µg) and chloramphenicol (C, 30µg). Diameters of inhibition zones were measured and results were interpreted according to CLSI (2013).

RESULTS

Identification of bacterial isolates:

A total of 81 bacterial isolates were recovered from clinical samples. Among the 81 isolates, 30 isolates (37%) were found to be Gram positive bacteria from which 20 isolates (24.7%) were identified as S. aureus, 8 isolates (9.9%) as S. epidermidis and 2 isolates (2.46%) as S. saprophyticus. The 51 Gram negative bacterial isolates include 30 isolates identified as P. aeruginosa (37%), 9 isolates identified as K. pneumonia (11.1%), 6 isolates as Moraxella catarralis (7.4%) and 6 isolates as Moraxella lacunata (7.4%) (Table 1).

Antibiotic susceptibility test (AST):

All isolates were susceptible to fluoroquinolones (Ciprofloxacin, Ofloxacin, Levofloxacin and Gatifloxacin). Almost all isolates were susceptible to aminoglycosides with 78 isolates being susceptible to gentamycin, 76 to tobramycin and 74 to neomycin. While 75 isolates were susceptible to tetracycline and 71 isolates were susceptible to chloramphenicol. Marked resistance was observed to bacitracin and fucidic acid with 37 and 49 isolates being resistant, respectively.

Our results show that all S. aureus were sensitive to fluoroquinolones, tobramycin and gentamycin, but show high resistance to fucidic acid (70 %). All S. epidermidis were sensitive to fluoroquinolones, chloramphenicol, tobramycin, gentamycin and tetracycline, but showed high resistance to fucidic acid (62.5%). While S. saprophyticus isolates showed high resistance to both fucidic acid and bacitracin (50%) (Table 2).
Table 1: The distribution of specimens and type of bacterial isolates

<table>
<thead>
<tr>
<th>Specimens</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of specimens</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Negative specimens*</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>Positive specimens</td>
<td>67</td>
<td>58</td>
</tr>
<tr>
<td>Multi-infection specimens**</td>
<td>14</td>
<td>20.9</td>
</tr>
<tr>
<td>Uni-infection specimens***</td>
<td>53</td>
<td>79.1</td>
</tr>
</tbody>
</table>

Microorganisms

- S. aureus: 20 (24.6%)
- S. epidermidis: 8 (9.9%)
- S. saprophyticus: 2 (2.5%)
- P. aeruginosa: 30 (37%)
- Klebsiella spp.: 9 (11.1%)
- M. lacunata: 6 (7.4%)
- M. catarrhalis: 6 (7.4%)

Total isolates: 81 (100%)

*Specimens showing no bacterial growth
**Specimens showing growth of more than one species of bacteria
***Specimens showing growth of one species of bacteria

Table 2: Pattern of resistance of Gram positive isolates to tested antibiotics (%)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>S. aureus n=20</th>
<th>S. epidermidis n=8</th>
<th>S. saprophyticus n=2</th>
<th>Total n=30 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Levofoxacin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neomycin</td>
<td>10</td>
<td>25</td>
<td>0</td>
<td>4 (13.3)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2 (6.7)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>2 (6.7)</td>
</tr>
<tr>
<td>Bacitracin</td>
<td>10</td>
<td>25</td>
<td>50</td>
<td>5 (16.7)</td>
</tr>
<tr>
<td>Fucidic acid</td>
<td>70</td>
<td>62.5</td>
<td>50</td>
<td>20 (67)</td>
</tr>
</tbody>
</table>

NO. of isolates (n)

For Gram negative isolates, P. aeruginosa showed moderate resistance to chloramphenicol (26.7%) and relatively high resistance to fusidic acid (46.7%) and bacitracin (50%). M. pneumoniae isolates were resistant to fusidic acid, and were highly resistant to bacitracin (77.8%). M. catarrhalis isolates showed high resistance to bacitracin (66.7%). All M. Lacunata isolates were resistant to bacitracin, while...
66.7% were resistant to fucidic acid and (Table 3). While *M. catarrhalis* showed high resistance to bacitracin (66.7%) and intermediate resistance to fucidic acid, tetracycline and aminoglycosides. Seven isolates were multidrug resistant (MDR).

Table 3: Pattern of resistance of Gram negative isolates to tested antibiotics (%)

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>P. aeruginosa n = 30</th>
<th>K. pneumonia n = 9</th>
<th>M. catarrhalis n = 6</th>
<th>M. lacunata n = 6</th>
<th>Total n = 51 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>3.3</td>
<td>22.2</td>
<td>33.3</td>
<td>0</td>
<td>5 (9.8)</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>3.3</td>
<td>0</td>
<td>33.3</td>
<td>0</td>
<td>3 (5.9)</td>
</tr>
<tr>
<td>Neomycin</td>
<td>3.3</td>
<td>0</td>
<td>33.3</td>
<td>0</td>
<td>3 (5.9)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0</td>
<td>22.2</td>
<td>33.3</td>
<td>0</td>
<td>4 (7.8)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>26.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8 (15.6)</td>
</tr>
<tr>
<td>Bacitracin</td>
<td>50</td>
<td>77.8</td>
<td>66.7</td>
<td>100</td>
<td>32 (62.7)</td>
</tr>
<tr>
<td>Fucidic acid</td>
<td>46.7</td>
<td>100</td>
<td>33.3</td>
<td>66.7</td>
<td>29 (56.9)</td>
</tr>
</tbody>
</table>

NO. of isolates (n)

DISCUSSION

The human eye is protected by a number of natural defence mechanisms that protect it from infections (Kanski and Bowling, 2011). Many ocular infections are caused by the use of soft contact lenses (Hou, 2012).

In the present study *P. aeruginosa* was the most isolated organism from eye infection. It was recovered at a frequency of 37 %, followed by *S. aureus* (24.6%), *Klebsiella* (11.1%), *S. epidermidis* (9.9%), *M. lacunata* (7.4%), *M. Catarrhalis* (7.4%) and *S. saprophyticus* (2.5%). Some previous studies recovered *P. aeruginosa* at lower frequencies ranging from 1.25-19% (Quraishy and Ali, 1981; Bharathi, 2010; Hou, 2012; Rahman, 2013). Geographical variability in *P. aeruginosa* acquisition suggested that there are factors such as climate associated with environmental *P. aeruginosa* proliferation and/or affecting individual susceptibility or exposure to *P. aeruginosa* (Psoter et al., 2014). This explains why our result was higher than others.

In this study *S. aureus* was recovered at a frequency of 24.6%, this was lower than the 32.3% reported by Shrief et al. (1976), and quite similar to results of Shayegani et al. (1982), Anagaw (2011) and Rahman (2013) who recovered *S. aureus* at frequency of 22%, 21.1% and 23.6%, respectively.

Regarding resistance profile, 10 % of *S. aureus* isolates were resistant to bacitracin. Previous studies showed similar resistance to bacitracin (Burns, 1963; Nicholas and Goolden, 1966) ranging from 6% - 20%. All *S. aureus* isolates were susceptible to fluroquinolones including gatifloxacin which is quite similar to what was reported by Bharathi et al. (2010) who showed that Gram positive isolates were 1%
resistant to moxifloxacin and 6.14% resistant to gatifloxacin.

In the current study, *P. aeruginosa* showed high resistance to bacitracin (50%) and fucidic acid (46.7%). While none of isolated *P. aeruginosa* were resistant to fluoroquinolones. Similarly Mehrnejad et al. (2011) showed that *P. aeruginosa* has no resistance to ofloxacin. While Bharathi et al. (2010) showed that *P. aeruginosa* was 8% resistant to gatifloxacin and 11.3% resistant to ofloxacin.

This study showed that 26.7% of isolated *P. aeruginosa* were resistant to chloramphenicol, this result is comparable with the result of Seal et al. (1982) who showed that 15% of isolates were resistant to chloramphenicol. While Nicholas and Goolden (1966) showed that it was 70% resistant to chloramphenicol. Table 3 also showed that none of isolated *P. aeruginosa* were resistant to tetracycline, this result was different from Seal et al. (1982) who showed that 15% of *P. aeruginosa* was resistant to tetracycline. While Nicholas and Goolden (1966) showed high resistance rate where 70% of isolates was resistant to tetracycline.

Only 3.3% of *P. aeruginosa* were resistant gentamycin, neomycin and tobramycin. Nicholas and Goolden (1966) and Seal et al. (1982) showed that less than 10% of *P. aeruginosa* was resistant to neomycin and gentamycin. Also Mehrnejad et al. (2011) showed that 3.5% were resistant to gentamycin. All of *Pseudomonas* isolates were susceptible to ciprofloxacin. This is different from results reported by Bharathi et al. (2010) who showed that 13.4% were resistant to ciprofloxacin.

In conclusion, this study found that fluoroquinolones are the most effective antimicrobial agents for treatment of eye infections in children. Improper use of antibiotics can lead to emergence of MDR strains. So choice of antibiotics for treatment of eye infections in children should depend on the antimicrobial resistance profile to avoid therapy failure.

References

practical medical microbiology, 14, 131-49.

Muluye; D., Wondimeneh, Y., Moges, F., Nega, T. and Ferede, G. (2014). Types and drug susceptibility patterns of bacterial isolates from eye discharge samples at Gondar University Hospital, Northwest Ethiopia. BMC research notes, 7(1), 1.

مقاومة البكتريا المعزولة من عدوى العيون في الأطفال للمضادات الميكروبية

غادة شاكر- أميرة الجنايني- عبير أبوالعزم- هبة الداش

استهدفت الدراسة الحالية إلى التعرف على البكتريا المساهمة في إلتهاب الملتحمة وتحقيق في المقاومة المقدرة للمضادات الميكروبية الموجودة في قطرات العيون الموجودة في السوق المصري بين البكتيريا المعزولة من عيون مرضى مصابين

بالالتهاب في الملتحمة.

تم إجراء هذه الدراسة على 116 عينة من الأطفال الذين تم تشخيصهم بالالتهاب في الملتحمة في قسم العيون بمستشفى الجامعة ومستشفى التعليمي ومستشفى السرية (عينات سريرية) خلال الفترة من ديسمبر 2013 إلى يناير 2015.

تم التعرف على 81 عزلة ووجد أنها عبارة عن ستافيلوكوكس أوريس بنسبة 24.7% و ستافيلوكوكس أيبيدريدنس بنسبة 9.9% و ستافيلوكوكس سابروفويككس بنسبة 2.46%. كما عزلت بكتيريا سودوموناس أريوجينوزا بنسبة 37% و كليبيسيا نيومونيا بنسبة 11.1% و موراكسيلا كاتاراليز بنسبة 7.4% و موراكسيلا لأكيوناتا بنسبة 7.4%.

تتم اختبار حساسية البكتيريا المعزولة للمضادات الحيوية المختلفة الموجودة في قطرات العيون الموجودة في السوق المصري.

أظهرت ستافيلوكوكس أوريس 100% حساسية للتوبراميسين و الجينتاميسين و 91% حساسية للكلورامفينيكل و الجاتيفلوكساسين و أوفلوكساسين و اللييفلوكساسين و السيبروفلكساسين و اليسترياسين و التريتوتريكلين كما أظهرت مقاومة بسيطة بنسبة 18% للبريميدين و مقاومة شديدة لحمض البيفسيديك بنسبة 63%. بينما عزلات الموراكسيلا أظهرت حساسية بنسبة 100% لكل من الأوفلوكساسين و اللييفلوكساسين و السيبروفلكساسين و الجاتيفلكساسين. على الجانب الآخر أظهرت عزلات السيلودوموناس أريوجينوزا حساسية بنسبة 100% لكل من الأوفلوكساسين السيبروفلكساسين.

و من هذه الدراسة وجد أن الفلوروكينولونز هي أفضل مجموعة من المضادات الميكروبية التي يمكن أن تستخدم لعلاج الالتهابات العيون الناتجة عن العدوى البكتيرية.